Serum Response Factor Regulates Immediate Early Host Gene Expression in Toxoplasma gondii-Infected Host Cells

نویسندگان

  • Mandi Wiley
  • Crystal Teygong
  • Eric Phelps
  • Jay Radke
  • Ira J. Blader
چکیده

Toxoplasma gondii is a wide spread pathogen that can cause severe and even fatal disease in fetuses and immune-compromised hosts. As an obligate intracellular parasite, Toxoplasma must alter the environment of its host cell in order to establish its replicative niche. This is accomplished, in part, by secretion of factors into the host cell that act to modulate processes such as transcription. Previous studies demonstrated that genes encoding transcription factors such as c-jun, junB, EGR1, and EGR2 were amongst the host genes that were the most rapidly upregulated following infection. In cells stimulated with growth factors, these genes are regulated by a transcription factor named Serum Response Factor. Serum Response Factor is a ubiquitously expressed DNA binding protein that regulates growth and actin cytoskeleton genes via MAP kinase or actin cytoskeletal signaling, respectively. Here, we report that Toxoplasma infection leads to the rapid activation of Serum Response Factor. Serum Response Factor activation is a Toxoplasma-specific event since the transcription factor is not activated by the closely related protozoan parasite, Neospora caninum. We further demonstrate that Serum Response Factor activation requires a parasite-derived secreted factor that signals via host MAP kinases but independently of the host actin cytoskeleton. Together, these data define Serum Response Factor as a host cell transcription factor that regulates immediate early gene expression in Toxoplasma-infected cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxoplasma gondii rhoptry discharge correlates with activation of the early growth response 2 host cell transcription factor.

Toxoplasma gondii is a ubiquitous apicomplexan parasite that can cause severe disease in fetuses and immune-compromised patients. Rhoptries, micronemes, and dense granules, which are secretory organelles unique to Toxoplasma and other apicomplexan parasites, play critical roles in parasite growth and virulence. To understand how these organelles modulate infected host cells, we sought to identi...

متن کامل

Increased Expression of Toxoplasma Gondii GRA1 Suppresses Host Cell Apoptosis

Suppression of host cell apoptosis enable Toxoplasma gondii to proliferate, but the mechanism is not well understood. We explore the relationship between the expression of T. gondii dense granule protein 1 (GRA1) and host HeLa cell apoptosis. We inserted the T. gondii gra1 coding gene into a pET32a vector and produced recombinant GRA1 (rGRA1) in E. coli Rosetta strain. We then immunized rabbits...

متن کامل

Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells.

Cells infected with the intracellular protozoan parasite Toxoplasma gondii undergo up-regulation of pro-inflammatory cytokines, organelle redistribution, and protection from apoptosis. To examine the molecular basis of these and other changes, gene expression profiles of human foreskin fibroblasts infected with Toxoplasma were studied using human cDNA microarrays consisting of approximately 22,...

متن کامل

Identification of Toxoplasma gondii Genes Responsive to the Host Immune Response during In Vivo Infection

Toxoplasma gondii is an obligate intracellular protozoa parasite that causes the disease toxoplasmosis. It resides within host cells in a parasitophorous vacuole distinct from the host cell endocytic system. T. gondii was used as a model to investigate how obligate intracellular parasites alter their gene expression in response to the host immune response during infection compared to growth in ...

متن کامل

cDNA microarray analysis of host-pathogen interactions in a porcine in vitro model for Toxoplasma gondii infection.

Toxoplasma gondii induces the expression of proinflammatory cytokines, reorganizes organelles, scavenges nutrients, and inhibits apoptosis in infected host cells. We used a cDNA microarray of 420 annotated porcine expressed sequence tags to analyze the molecular basis of these changes at eight time points over a 72-hour period in porcine kidney epithelial (PK13) cells infected with T. gondii. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011